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a b s t r a c t

Numerical simulations have been performed for the flow past and through a porous square cylinder over
a wide range of Reynolds numbers (1 6 Re 6 50) and Darcy numbers (10�6

6 Da 6 10�1). It is found that
the recirculating wake existing downstream of the cylinder is completely detached from the body under a
certain range of parameters. The size and the location of the wake mainly depend on Re and Da. Specially,
the wake may initially increase but then decrease in size with an increase in Re, and eventually disappear
when the Reynolds number is sufficiently large. The variation of the critical Reynolds number for the
onset of recirculating wake as a function of Darcy number is summarized. The results also show that
in the range of Da investigated, different from that of the solid cylinder, the recirculating wake is initially
developed downstream of the porous cylinder, but not on the surface of it.

� 2009 Elsevier Inc. All rights reserved.
1. Introduction

Flow past bluff porous body occurs in many practical applica-
tions. A typical application in bioengineering is the flow system
in bioreactor with porous microcarriers (Braeckmans et al., 2002)
or porous scaffold (Yu et al., 2009), in which the surrounding flow
should effectively transport nutrients and metabolites to and from
porous structure where the cells are attached. Another application
can be found in chemical process industries, which involves the
settling of ‘flocs’ of material in liquid–solid rectors (Masliyah and
Polikar, 1980; Noymer et al., 1998). Other applications include
the nuclear biological chemical filters, which are widely used for
chemical, pharmaceutical and medical industries (Bhattacharyya
et al., 2006).

The low Reynolds number flow of viscous fluid around a porous
sphere has been examined by Joseph and Tao (1964) and Neale
et al. (1973). It was found that the drag on a permeable sphere is
less than that for an impermeable sphere at a low Reynolds num-
ber. The steady flow around a porous cylinder at a moderate Rey-
nolds number has been investigated by Noymer et al. (1998) and
Bhattacharyya et al. (2006). Their numerical solutions implied that
the wake appears and attaches to the porous cylinder under certain
parameter ranges. The unsteady vortex shedding behind a porous
square cylinder has also been studied by Jue (2004) and Chen
et al. (2008). It was found that the onset Reynolds number for vor-
tex shedding is delayed with an increase in Darcy number.
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All the above studies suggest that the flow phenomena associ-
ated with porous cylinder are rather similar to those of solid cylin-
der. However, a recent work of Yu et al. (submitted for publication)
revealed that the wake existing downstream of the porous circular
cylinder either penetrates into or is completely detached from the
cylinder, but is not attached to it. The detached wake has also been
reported in other flow conditions. The first is the flow around a
two-dimensional cylindrical body with ‘‘base bleed”, which has
been investigated by Leal and Acrivos (1969). By involving the
injection of relatively low velocity fluid through the trailing edge
base of the bluff body, i.e. ‘‘base bleed”, the detached recirculating
wake was observed at a Reynolds number of 260. The second
example of a flow is the translational motion of a viscous drop
(Dandy and Leal, 1989; Rivkind and Ryskin, 1976), in which the de-
tached wake occurs in a wide range of parameters. All these evi-
dences suggest that the appearance of recirculating wakes is not
a result of separation in boundary layers in an adverse pressure
gradient but may be due to vorticity accumulation as proposed
by Leal (1989), and Dandy and Leal (1989).

The objective of the present study is to investigate the steady
flow past and through a porous square cylinder. The main motiva-
tion is to examine whether the penetrating wake and the detached
wake, which occur in the flow around the porous circular cylinder,
would still appear for the square one. Also, we aim to characterize
the flow behaviour, especially the wake structure, as a function of
the Reynolds number and the Darcy number.

Indeed, the present simulations reveal that the wake is com-
pletely detached from the square cylinder under a certain range
of parameters. Specially, the wake may initially increase but then
decrease in size with an increase in the Reynolds number, and
eventually disappear when the Reynolds number is sufficiently
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large. Again, these features indicate that the recirculating wake at a
finite Reynolds number should be viewed as ‘being a consequence
of vorticity accumulation rather than a finite-Reynolds-number
version of the separation process that is described by boundary-
layer theory for asymptotic limit Re ?10 (Leal, 1989). These
new findings in turn promote us to examine, from the fundamental
point of view, how vorticity is produced. The interface jump
boundary condition can be regards as an intermediate condition
between no-slip and zero shear stress. Thus, the mechanism of vor-
ticity production is similar to that of a viscous drop in this sense.
Moreover, as the streamline can pass through the cylinder, the nor-
mal velocity component is nonzero at the surface. This feature
resembles the flow around a solid body with base bleed. The over-
all mechanism for the porous square cylinder is somewhat similar
to that of the circular one (Yu et al., submitted for publication).
However, the curvature effect of the circular cylinder is replaced
by the sharp corner effect of the square one. Hence, the present
study provides some insight into the competition/cooperation of
the above-mentioned mechanisms.

The remainder of this paper is organized as follows: Section 2
describes the governing equations, boundary conditions, and solu-
tion techniques and presents grid-independent study and valida-
tion. Section 3 demonstrates the numerical results, which include
the variations of flow pattern, especially the recirculating wake,
with the Reynolds and Darcy numbers. The new findings are high-
lighted and their underlying mechanism is discussed in this sec-
tion. And finally, in Section 4, the conclusion is drawn.

2. Computational methods

2.1. Governing equations

The computational domain is presented schematically in Fig. 1,
which shows an infinite long porous square cylinder of side length
D placed in a uniform flow (from left to right) with velocity U1.
Here only the steady flow is considered and in the flow regime,
the two-dimensional simulations are able to capture all flow fea-
tures. To minimize the effect of the outer boundaries, the lengths
of the computational domain in the streamwise and spanwise
directions are defined as 60 times the side length of the cylinder.
Considering two-dimensional, steady, laminar flow of an incom-
pressible, viscous fluid, the governing equations for a homogenous
fluid region, using vector form, can be written as:

r �~u ¼ 0 ð1Þ
q~u � r~u ¼ �rpþ lr2~u ð2Þ
Fig. 1. Schematic of flow past a porous square cylinder.
where p is the pressure, q is the fluid density, and l is the fluid dy-
namic viscosity.

The porous medium is considered to be rigid, homogeneous and
isotropic, and saturated with the same single-phase fluid as that in
the homogenous fluid region. The governing equations for porous
region based on Darcy–Brinkman–Forchheimer extended model
can be expressed as (Chen et al., 2008; Yu et al., 2007):

r �~u ¼ 0 ð3Þ

q
~u
e
� r
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where~u is the local average velocity vector (Darcy velocity), p� is the
intrinsic average pressure, l is the fluid dynamic viscosity, e is the
porosity, K is the permeability, and CF ¼ 1:75=

ffiffiffiffiffiffiffiffiffiffiffiffiffi
150e3
p� �

is Forchhei-
mer coefficient. Note that throughout the paper, viscosity means dy-
namic viscosity of the fluid but not the effective (Brinkman)
viscosity. The ‘‘*” denotes the intrinsic average, which is an average
over the volume occupied by the fluid phase. The local average and
intrinsic average can be linked by the Dupuit–Forchheimer relation-
ship, for example, p ¼ ep�.

The stress jump condition (Ochoa-Tapia and Whitaker, 1995a,b,
1998) is applied at the porous–fluid interface:

l
e
@ut

@n

����
porous

� l @ut
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����
fluid
¼ b1

lffiffiffiffi
K
p ut

����
interface

þ b2qu2
t ð5Þ

where in the porous medium region, ut is the Darcy velocity compo-
nent parallel to the interface aligned with the direction t and nor-
mal to the direction n while in the homogenous fluid region ut is
the fluid velocity component parallel to the interface; b1 and b2

are adjustable parameters which account for the stress jump at
the interface.

The stress jump condition is based on a generalized nonlocal
form of the volume average Navier–Stokes equations, which ac-
counts for the excess surface stress encountered at the interface.
b1 is a coefficient associated with an excess viscous stress while
b2 is a coefficient related to an excess inertial stress. Ochoa-Tapia
& Whitaker’s experiment (1995b) and analysis (1998) indicated
that both b1 and b2 are of order 1.

In addition to Eq. (5), the continuity of velocity and normal
stress prevailing at the interface is given by:

~ujfluid ¼~ujporous ð6Þ
l
e
@un

@n

����
porous

� l @un

@n

����
fluid
¼ 0 ð7Þ

where in the porous medium region, un is the Darcy velocity com-
ponent normal to the interface; and in the homogenous fluid region,
un is the fluid velocity component normal to the interface.

For the present type of flow problems, the physical domain is
infinite while the simulation must be performed on a confined
computational domain. Thus the computational domain should
be truncated from the real domain by using artificial open bound-
ary conditions (Sohankar et al., 1998). In the present study, the
free-stream condition on the velocity is imposed on the upstream
boundary, a Neumann condition for the velocity is specified at the
downstream boundary that corresponds to the stress-free condi-
tion, and the slip boundary condition is applied on the lateral
boundaries.

The present study considers two-dimensional steady flow past
and through a porous square cylinder with zero angle of incidence
placed in a uniform free stream. The flow behaviour is determined
by many factors including the Reynolds number, the Darcy
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number, the porosity, jump parameters etc. The Reynolds number
is based on the free-stream velocity U1 and the side length D:

Re ¼ qU1D=l ð8Þ

The Darcy number is defined as:

Da ¼ K=D2 ð9Þ

One of practical applications related to the present flow config-
uration is the cell culture in a bioreactor with porous scaffold. In
this condition, the flow is usually kept laminar and steady to main-
tain a suitable environment for cell growth. Thus, the range of Re
investigated is within 50. The flow behaviour can be fully captured
by 2D simulations as the 3D transition occurs at a higher
Re � O(100).

The Darcy number is varied in a wide range from 10�6 to 10�1 in
the present study. For the scaffold for cell culture, the permeability
is in the range of 10�12–10�9 m2 (Yu et al., 2009), which corre-
sponds to Da ranged from 10�10 to 10�4, depending on the reference
length used. Generally, Da may not go up to 10�2 in practical appli-
cations (Large, 1992). However, the upper limit of Da herein is ex-
tended to 10�1 from an academic point of view. For a very low
Da, the porous cylinder approaches to a solid one. Thus, the lower
limit of Da is set to 10�6, and below this value, the effect of Da on
the external flow around the porous cylinder can be negligible.

For flow past a porous cylinder, the overall flow behaviour is
determined by the interaction between the external flow around
and the internal flow through it. Generally, the flow around a bluff
body is mainly affected by Re. The ability of a porous medium to
conduct fluid flow can be quantitatively represented by the perme-
ability, or the dimensionless Darcy number. Thus, the present flow
is chiefly determined by Re and Da while other parameters have
relatively small influences. The previous studies (Bhattacharyya
et al., 2006; Chen et al., 2008; Yu et al., submitted for publication)
have also shown that the Reynolds number and the Darcy number
have dominate effects on these types of flows. Thus, the present
study will focus on evaluating the effect of Re and Da. The porosity
is fixed at 0.7 and the jump parameters b1 and b2 were both set to
zero unless specified otherwise, within the range of porosity from
0.6 to 0.95 (Yu et al., 2009) and the range of jump parameters of
order 1.

It is well known that for a laminar, steady flow past a bluff body,
a recirculating wake consisting of a counter-rotating vortex pair
may be observed behind the body for a certain range of Re. usually,
the recirculating wake is fully attached to the body. For the case of
a solid square cylinder, the flow separates at the trailing edges and
reattaches at the centre of the leeward surface. However, in the
present study, it is found that a recirculating wake behind a porous
cylinder is not attached to the rear of it. The recirculating wake is
either detached from or penetrates into the cylinder. This means
that there is no reattachment of the recirculating wake on the
surface of porous body. As illustrated in Fig. 2, the geometrical
LL
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Cx Cy

y
x

Porous cylinder

Fig. 2. Geometrical parameters of the recirculating wake behind a porous square
cylinder.
parameters considered here are the downstream distances to the
leading and trailing edges of the recirculating wake (LL and LR),
and the position of the wake centre (Cx and Cy). The length of the
recirculating wake is then calculated as Lw = LR � LL. The negative
value of LL means that the recirculating wake penetrated into the
cylinder.

The occurrence of recirculating wake is a continuous process
with an increase in Re, which is determined by monitoring the
stagnation points around the wake region. Recirculating wake is
deemed to form when two stagnation points are observed with
Re gradually increasing in steps of 1 for a fixed Da.

2.2. B. Grids-Independent study and validation

The present numerical method is based on finite volume meth-
od with a collocated variable arrangement (Ferziger and Perić,
1999). The body-fitted and multi-block grids method proposed
by Lilek et al. (1997) was applied. The detailed numerical treat-
ment can be found in Yu et al. (2007). The present numerical meth-
od has been successfully applied for flows past and around porous
bluff bodies (Chen et al., 2008; Yu et al., 2007, submitted for pub-
lication). Here only a simple study is provided for validation.

A typical example of mesh within and around the porous–fluid
interface is shown in Fig. 3. The whole computational domain was
divided into two sub-domains, with domain 1 for the porous cylin-
der and domain 2 for the outer flow region. Domain 2 was meshed
using O-type grid, with the grids in the radial direction stretched
through an exponential progression to ensure a fine grid near the
porous–fluid interface. Note that only a small part of domain 2 is
shown in Fig. 3 in order to clearly illustrate the grid topology.

The present method was first applied to simulate the flow
around solid square cylinder. The variation of the overall wake
length LR (distance from the rear of cylinder to the trailing edge
of the recirculating wake) with Re is presented in Fig. 4, which
shows good agreement with previously published results (Sharma
and Eswaran, 2004). To further validate the present method, a
study was performed to investigate the relationship between the
overall wake length LR and Da for a porous square cylinder at fixed
Re = 20 and e = 0.7. Fig. 5 shows that the overall wake length LR be-
comes longer with a decrease in Da. However the overall wake
length LR approaches a constant value at a low Da as the porous
cylinder tends to a solid one. The overall wake length LR at
Da = 1 � 10�6 is about 1.297 (Fig. 5), which is rather close to the
value of 1.310 for the solid one.
Porous Cylinder

1

Fig. 3. A typical example of grid near the interface.
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Fig. 4. Variation of wake length with Reynolds number, solid square cylinder.
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Fig. 5. Variation of overall wake length with Darcy number at Re = 20.
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To ensure a grid-independent solution and accurate resolution
in space, a study has been performed with three sets of mesh for
both solid and porous cylinders. The tested Reynolds numbers
were 20 and 45 while the Darcy number for the porous cylinder
is fixed at 5 � 10�6. Table 1 shows the comparison of LR at various
Table 1
Effect of grid size on the overall wake length.

Cases Grid size

Domain 1

Solid cylinder 1
2
3

Porous cylinder 4 40 � 40
5 60 � 60
6 80 � 80
grid sizes. For the solid cylinder, the difference in LR between the
two sets of grids 320 � 240 and 240 � 200 is less than 1.5%. The re-
sults indicate that the 240 � 200 grid is fine enough to mesh the
region outside the cylinder. For the porous cylinder, the difference
in LR between the two sets of grids (cases 5 and 6) is less than 1.5%.
To ensure grid-independent solution, the grid used in case 6 was
chosen for the final simulations.
3. Results and discussion

3.1. Flow pattern

The effects of Re and Da on the flow pattern are illustrated by
presenting a series of streamline plots at various values of Re for
four different Da. The four Darcy numbers are 10�2, 7 � 10�3,
3 � 10�3, and 10�5, with the first one for high Da value, the last
one for low Da value and the rest two for intermediate Da values.
As illustrated below, for different Da, the interactions between the
external flow around and the internal flow within the porous cyl-
inder are different, resulting in different flow behaviours.

Fig. 6 shows the flow field at Da = 10�2 for several values of Re.
At this high Darcy number value, the flow experiences little resis-
tance when it passes through the porous cylinder. As a significant
portion of fluid penetrates through the porous cylinder, the
streamlines around it exhibits a smaller deviation compared with
that around the solid cylinder. Figs. 6a to d show that the stream-
lines become flatter with an increase in Re. This is expected when
we examine the resistance force that the internal porous flow
experiences. The Darcy drag force le~u=K is the main source of
the resistance force, which decreases with an increase in Da or
Re. As a result, the streamlines are less deviated with an increase
in Da or Re.

There is no recirculating wake behind the square cylinder in the
range of Re investigated for a high Darcy number. For a high Da, the
shape of the object has a small effect on streamline contours. The
present flow behaviour is rather similar to that of a porous circular
cylinder at the same Re and Da (Yu et al., submitted for publica-
tion). In this sense, the overall flow behaviour for a high Da is
mainly determined by the internal porous flow.

Now we consider the flow field at a low Darcy number. The
Darcy number of 10�5 was chosen to show the flow behaviour at
this low extreme. As shown in Fig. 7, the streamline contours at dif-
ferent Re indicate that the flow field resembles that around a solid
cylinder. For the purpose of comparison, the streamline contours
for the flow around a solid square cylinder are shown in Fig. 8.
Fig. 7 shows that the recirculating wake exists at Re = 5 and in-
creases in size with an increase in Re. At higher Re, the wake is
fixed by two of the sharp edges. The lengths of the wake are
1.291 for Re = 20 and 2.772 for Re = 40, which are pretty close to
those of a solid square cylinder (1.310 for Re = 20 and 2.802 for
Re = 40). It is worth noting that the wake is detached from the por-
ous square cylinder for the Reynolds number just above that for
the onset of the wake. However, at high Re, the wake appears to
LR

Domain 2 Re = 20 Re = 45

160 � 160 1.285 3.023
240 � 200 1.303 3.135
320 � 240 1.310 3.179

160 � 160 1.262 2.982
240 � 200 1.285 3.105
320 � 240 1.294 3.152



(c) Re = 30 (d) Re = 40

(a) Re = 10 (b) Re = 20

Fig. 6. Contours of streamline at a fixed Darcy number of Da = 1 � 10�2 for different Reynolds numbers as indicated.

(a) Re = 1 (b) Re = 5

(d) Re = 20(c) Re = 10

(e) Re = 30 (f) Re = 40

Fig. 7. Contours of streamline at a fixed Darcy number of Da = 1 � 10�5 for different Reynolds numbers as indicated.
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be attached to the leeward surface so that no fluid passes through
the leeward surface. In summary, the porous cylinder approaches a
solid one for a low Da. The flow resistance is very large and little
fluid can pass through the cylinder. Thus, the overall flow behav-
iour for a low Da is chiefly determined by the Reynolds number.
For an intermediate Da, the flow patterns are more complicated.
At Da = 7 � 10�3, a considerable portion of fluid penetrates through
the porous square cylinder. The most striking flow feature at
this Darcy number is the detached recirculating wake as shown
in Figs. 9d–g. The wake first appears at a Reynolds number of



(c) Re = 20 (d) Re = 40

(a) Re = 1 (b) Re = 10

Fig. 8. Contours of streamline around a solid cylinder for different Reynolds numbers as indicated.
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approximately 21, then grows to a maximum length at roughly
Re = 30, decreases in size with a further increase in Re, and eventu-
ally completely disappears when the Reynolds number reaches 42.
This flow behaviour on the disappearance of the detached wake is
fairly similar to that of a viscous drop (Dandy and Leal, 1989).
However, it occurs at Re � O(100) for a viscous drop while at
Re � O(10) for the present porous square cylinder.

When the Darcy number goes to a relatively low value, i.e.
Da = 3 � 10�3, the wake first appears at a Reynolds number of
approximately 10. It is found that the wake grows in size but does
not disappear with a continuous increase in Re as demonstrated in
Fig. 10. This observation confirmed that the wake will not disap-
pear with an increase in Re if the Darcy number is lower than a cer-
tain threshold, which is consistent with the previous studies
showing that vortex shedding does occur for Da = 1 � 10�4 when
the Reynolds number is beyond a certain critical value (Jue,
2004; Chen et al., 2008).

The detached wake has also been reported in other flow condi-
tions. The similar case is that the flow past and through a porous
circular cylinder. In the study of Yu et al. (submitted for publica-
tion), the wake existing downstream of the porous circular cylinder
is found to be completely detached from the cylinder in a certain
range of parameters. Another example is the translational motion
of a viscous drop (Dandy and Leal, 1989; Rivkind and Ryskin,
1976), in which the detached wake may even disappear with an
increasing Re. Additionally, the detached wake has also been found
in the flow around a bluff body with ‘‘base bleed” studied by Leal
and Acirvos (1969).

Although the detached recirculating wake structure has been
observed in other fluid conditions, it is nevertheless rather remark-
able comparing with the conventional attached wakes existing on
solid bodies, and both bubbles and voids. When the detached wake
occurs, there is not even a separation or a detachment point on the
bodies, but only one ‘‘separation” point along the horizontal axis. It
is also observed that the magnitude of the surface vorticity must
exceed a minimum threshold level (dependent on Re) before a
recirculating wake appears, which is approximately independent
of the boundary condition at the surface (Leal, 1989). Based on
the numerical and experimental observations of the detached
recirculating wake (Leal and Acrivos, 1969; Dandy and Leal,
1989; Rivkind and Ryskin, 1976), Leal (1989) concluded in his pio-
neer work that ‘Recirculating wakes form at finite Reynolds num-
ber due to vorticity accumulation, and this has nothing to do
with the mechanics of boundary layer separation in the limit
Re ?10.

For flow past a smooth bluff body, vorticity is generated by two
mechanisms, i.e. the no-slip boundary condition and the surface
curvature. It is shown that the dimensionless vorticities generated
by surface curvature and by the no-slip condition are O(1) and
O(Re1/2) for large Re, respectively (Leal, 1989). For the porous circu-
lar cylinder, the rate of vorticity production results from the corpo-
ration/competition of the two mechanisms (Yu et al., submitted for
publication). For the porous square cylinder, there is no smooth
surface curvature but sharp edge. The recirculating wake first oc-
curs around Re = 1 for a solid square cylinder (Sharma and Eswa-
ran, 2004; Zaki, 1994) whilst it first occurs around Re = 6 for a
solid circular one (Yu et al., submitted for publication; Underwood,
1969), which suggest that the sharp edge is a more effective source
of vorticity generation compared with the no-slip condition. Note
that the flow passes through the porous square cylinder and the
exiting flow at the leeward surface resembles ‘base bleed’. This
‘base bleed’ also has a significant effect on the flow behaviour.
We shall give more discussion on this aspect later.

To provide a quantitative analysis, we present a series of vortic-
ity plots at various values of Re for different Da. Fig. 11 shows the
vorticity contours at Re = 1 and 5 for Da = 1 � 10�5, which demon-
strates that the vorticity is accumulated around the leading edges
of the cylinder. For Re = 5, the magnitude of vorticity significantly
increases comparing with that of Re = 1 (7.9 for Re = 5 while 3.8
for Re = 1). This means that with Re increasing, the generation rate
of vorticity is faster than the convection rate. When the magnitude
of vorticity exceeds a certain threshold, the recirculating wake is
induced. However, when Da is increased, more fluid may penetrate
the porous cylinder, resulting in an increase in the convection rate
of vorticity. Fig. 12 shows the vorticity contours at Re = 35 and 45
for Da = 7 � 10�3. Now the magnitude of vorticity decreases with
increasing Re as shown in Figs. 12a and b, implying that the con-
vection rate of vorticity is fast than the generation rate. Thus, the
recirculating wake disappears at Re = 45 because vorticity is not
sufficiently strong.



(a) Re = 10 (b) Re = 50

Fig. 10. Contours of streamline at a fixed Darcy number of Da = 3 � 10�3 for different Reynolds numbers as indicated.

(a) Re = 10 (b) Re = 15

(d) Re = 25(c) Re = 20

(e) Re = 30 (f) Re = 35

(g) Re = 40 (h) Re = 45

Fig. 9. Contours of streamline at a fixed Darcy number of Da = 7 � 10�3 for different Reynolds numbers as indicated.
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3.2. Occurrence of recirculating wake

Now the attention focuses on the effect of Da on the critical
Reynolds number for the occurrence of a recirculating wake. As
shown in Fig. 13, the critical Reynolds number decreases with
decreasing Da. There is no recirculating wake in the range of Re
investigated when Da > 7.5 � 10�3. The recirculating wake first
appears around Recr = 24.5 for Da = 7.4 � 10�3. The critical Rey-
nolds number rapidly decreases to 5.5 for Da = 10�3 and slowly
drops to 1.5 for Da = 10�6. Fig. 13 suggests that when Da goes
to an infinitely small value, the critical Reynolds number ap-
proaches an asymptote which equals to that of a solid cylinder.
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Fig. 11. Contours of vorticity at a fixed Darcy number of Da = 1 for different
Reynolds number as indicated.
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Fig. 12. Contours of vorticity at a fixed Darcy number of Da = 7 for different
Reynolds number as indicated.
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The present simulation indicates that the critical Reynolds num-
ber for a solid cylinder is around 1.5, which is consistent with
the results of Zaki et al. (1994) and of Sharma and Eswaran
(2004).

Fig. 13 also presents the variations of the critical Reynolds num-
ber for the disappearance of a recirculating wake. For
Da = 7.4 � 10�3, the recirculating wake disappears at Redis � 33.5.
With decreasing Da, the recirculating wake disappears at a higher
Re, for example at Redis � 48.5 for Da = 6.6 � 10�3. The disappear-
ance phenomenon of a recirculating wake only occurs at a narrow
range of Da. For an even lower Da = 10�4, the recirculating wake
does not disappear.

Fig. 14 presents the streamlines for the flow around and
through the porous square cylinder at the Reynolds number
slightly larger than the critical Re for the onset of the recirculating
wake. The streamline contours clearly show that, for all the three
Darcy numbers Da = 7 � 10�3, 1 � 10�3 and 1 � 10�5, the recircu-
lating wake is not separated from the surface of it. Fig. 14a shows
that the wake initially occurs around 0.4D downstream of the cyl-
inder at Da = 7 � 10�3. For a lower Da of 1 � 10�3, the wake moves
towards the rear of square cylinder as shown in Fig. 14b. For an
even lower Da of 1 � 10�5, the recirculating wake almost attaches
to the rear of the cylinder (Fig. 14c). This trend indicates that when
the Darcy number tends to an infinitely small value, that is the por-
ous cylinder approaches a solid one, the recirculating wake eventu-
ally attaches to the rear of square cylinder. Clearly, when the wake
initially occurs, there is only one ‘‘separation” point along the hor-
izontal axis outside the porous square cylinder, but not a pair of
separation points as what exit on the surface of the solid cylinder
or bubble/void (Dandy and Leal, 1986).
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Fig. 14. Streamlines for the flow around and through the porous square cylinder
just after the formation of recirculating wake; (a) Re = 21, Da = 7 � 10�3; (b) Re = 6,
Da = 10�3; and (c) Re = 2, Da = 10�5.
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It has been found that the detached wake may also appear be-
hind a porous circular cylinder (Yu et al., submitted for publica-
tion). The flow behaviours behind the two different shapes of
cylinders share some common characteristics. For example, a recir-
culating wake never occurs if the Darcy number is beyond a certain
value (around 7 � 10�3). The critical Reynolds number for the on-
set of a recirculating wake tends to that of a solid cylinder with the
same shape when the Darcy number approaches an infinitely small
value.

For the flow past a porous body, the fluid velocity along the sur-
face, which is mainly determined by the Darcy number and Rey-
nolds number, and secondly affected by the jump parameters, is
nonzero. Compared with that of the solid cylinder, this velocity
changes the rate of vorticity production on the surface. Also, it
influences the transport of vorticity along the shear layer that ex-
ists behind the body. Thus, different from the attached wake exist-
ing on solid bodies, and both bubbles and voids, the recirculating
wake is now detached from the porous surface.

Specially, the normal velocity component along the leeward
surface of porous square cylinder resembles ‘base bleed’. Fig. 15
shows the normal velocity component along the leeward surface
at different Da for Re = 20. The velocity reaches the maximum va-
lue at the two sides and the minimum value at the centre. Near the
centre of the surface, the velocity profile is rather flat, especially
when the Darcy number is small. The velocity is larger when the
Darcy number is bigger, and so does the difference between the
velocities at the side and the centre.

According to the entrainment–detrainment mechanism (Leal
and Acrivos, 1969), the recirculating wake behind bluff body is pri-
marily due to the flow field that results from fluid being entrained
into the inner side of this shear layer. The entrained fluid detrains
and reverses itself in the direction to supply the entrainment needs
of the shear layer. This description has been used to discuss the ef-
fects of base bleed on the wake structure by Leal and Acrivos
(1969). It is also suitable to explain the effect of the normal velocity
component along the leeward surface (‘base bleed’ velocity) in the
present study. As shown in Fig. 15, the ‘base bleed’ velocity is small
if the Darcy number is relatively small. Thus, the amount of fluid
being supplied into the near-wake is not sufficient to satisfy the
entrainment needs of the shear layer along the detached stream-
line, and the recirculating wake should form downstream. How-
ever, if the ‘base bleed’ velocity is large due to a relatively large
Da and the sufficient amount of fluid is supplied into the near-
wake, the recirculating wake should disappear.

The above explanation is consistent with the tendency of the
Recr–Da Curve as shown in Fig. 13. At an extremely high Da, the
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recirculating wake may not appear in the range of Re investigated
due to a high ‘base bleed’ velocity. At an extremely low Da, the crit-
ical Reynolds number approaches that of the solid cylinder due to a
zero ‘base bleed’ velocity. At an intermediate Da, the critical Rey-
nolds number is larger than that of the solid cylinder due to a mod-
erate ‘base bleed’ velocity.

To provide a somewhat quantitative analysis, we summarize
the average normal velocity Uavg along the leeward surface of the
porous square cylinder for different Re and Da. This average veloc-
ity can be also regarded as the ‘base bleed’ rate. As seen in the plot
in Fig. 16, for fixed Re, Uavg increases with an increase in Da, which
means more fluid being supplied into the near-wake. Thus a high
Reynolds number is needed to cause a recirculating wake at a high
Da. If the amount of the fluid is sufficient to satisfy the entrainment
needs of the shear layer at an even higher Da, a recirculating wake
should be absent. The present simulation indicates that for a high
Da > 7.5 � 10�3, the ‘base bleed’ rate is larger than around 0.05, at
which condition the recirculating wake does not appear. Similarly,
the early experiments conducted by Bearman (1967) and Leal and
Acrivos (1969) have indicated that the recirculating wake behind a
two-dimensional bluff body has effectively disappeared if the ‘base
bleed’ rate is beyond a certain threshold of �0.15. It is also similar
to the numerical simulations of Arcas and Redekopp (2004), which
showed that the vortex shedding behind the blunt body is sup-
pressed when the critical bleed coefficient is beyond a certain crit-
ical value.

However, the Darcy number is not the sole factor that deter-
mines the ‘base bleed’ rate. Fig. 16 shows that the Reynolds num-
ber also has noticeable effect on the ‘base bleed’ rate. At a fixed
value of Da, with an increase in Re, the ‘base bleed’ rate increases
when Da > 5 � 10�3 while decreases when Da < 1 � 10�3. Thus,
the detached wake can only be understood from the interaction be-
tween the external flow, which is mainly determined by the Rey-
nolds number and the body shape, and the internal porous flow,
which is mainly determined by the Reynolds number and Darcy
number.

At a high Da, the ‘base bleed’ rate increases with an increase in
Re, which would in turn affect the onset of recirculating wake. If a
significant portion of flow, characterized by a dimensionless value
of q, passes through the cylinder, the effective Reynolds number for
flow around the cylinder is decreased to Reeff = (1 � q)Re. In this
sense, a relatively larger Reynolds number is needed to induce
the recirculating wake. Thus, at a high Da, both Da and Re them-
selves primarily determine the critical Reynolds number for onset
of a recirculating wake. However, at a very low Da, the ‘base bleed’
rate is negligible and the detached wake is mainly influenced by
the external flow. The limit Da ? 0 can be regarded as a solid cyl-
inder and the critical Reynolds number for onset of a recirculating
wake is equal to that of the solid cylinder.

Now it is not surprising to observe the disappearance of recircu-
lating wake with a further increase in Re when 6.6 � 10�3

< Da < 7.4 � 10�3 (see Fig. 13). In this range of Da, the ‘base bleed’
rate increases with Re (see Fig. 16). If the ‘base bleed’ rate exceeds a
certain threshold, the amount of bleeding fluid is sufficient to sat-
isfy the entrainment needs and the recirculating wake disappears.
Hence, in this range of Da, the recirculating wake decreases in size
and eventually disappears with a continuous increase in Re.

It is worth noting that the noticeable differences exist between
the flow behaviours behind the porous square and circular cylin-
ders, due to the shape effect. Clearly, at the same Darcy number,
the critical Reynolds number for onset of a recirculating wake of
the porous square cylinder is smaller than that of the porous circu-
lar cylinder as shown in Fig. 13. As explained above, this is because
the sharp edge of the square cylinder is more effective on vorticity
generation compared with the smooth curvature of the circular
one.

Nevertheless, Yu et al. (submitted for publication) did not ob-
serve the disappearance of the recirculating wake behind the por-
ous circular cylinder with an increase in Re. One possible reason is
that for the porous circular cylinder the effect of Re on the ‘base
bleed’ rate is smaller than that of the porous square cylinder. Also,
the range of Re in the work of Yu et al. (submitted for publication)
is limited to be within 40. The disappearance of the recirculating
wake might be observed if they continuously increased the Rey-
nolds number to a relatively high value.

Another interesting difference is the asymptotic behaviour of
the critical Reynolds number with a continuous decrease in Da.
For the porous square cylinder, the critical Reynolds number
monotonically decreases to the asymptotic value of the solid
square cylinder with a decrease in Da. However, for the porous cir-
cular cylinder, with decreasing Da, the critical Reynolds number
may initially decrease to a value lower than, and then asymptoti-
cally increase to, that of a solid circular cylinder (Yu et al., submit-
ted for publication). Yu et al. (submitted for publication) explained
that the unexpected trend of the Recr–Da curve for the porous cir-
cular cylinder might be caused by the negative exit velocity at the
rear of the cylinder, that is the ‘base suction’ effect. However, in the
present study, Fig. 16 shows that the ‘base bleed’ rate from leeward
surface of the porous square cylinder is always large than zero and
monotonically approaches zero with a continuous decrease in Da.

Furthermore, the recirculating wake always initially develops
outside of the porous square cylinder while may initially occur in-
side of the porous circular cylinder for a certain range of Da. Other
minor difference includes that the largest Darcy number of the on-
set of a recirculating wake for a porous square cylinder is slightly
larger than that for a porous circular cylinder. As explained above,
the sharp edge of the porous square cylinder might cause these
differences.

The detached wake has also been observed behind a viscous
drop (Dandy and Leal, 1989). This detached wake may also disap-
pear with a continuous increase in Re. Based on the detailed
numerical simulations, Dandy and Leal (1989) concluded that
these flow behaviours are controlled by the weak motion of the
fluid inside the viscous drop. Similarly, in the present study, a small
mount of fluid passes through the porous cylinder, which causes
the same behaviour of the recirculating wake. Both of the studies
indicates that the necessary condition of the occurrence of
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detached wake is the weak motion of the fluid existing inside the
bluff body, which appears to control the behaviour of the external
flow near the body. The difference of the two flows is that the fluid
only recirculates inside the viscous drop while it penetrates
through the porous cylinder. In this sense, this penetrating flow
is more similar to the base bleed effect (Leal and Acrivos, 1969).

The critical Reynolds number for onset of the detached wake
behind the viscous drop occurs at Re � O(10), which is the same
order as that of the solid sphere. The critical Reynolds number
for the onset of a recirculating wake behind a porous cylinder oc-
curs at Re � O(1), which is the same order as that of its solid pair.
Specially, when Da ? 0, this critical Reynolds number approaches
exactly that of the solid pair. This suggests that, although the exact
value of the critical Reynolds number for a porous cylinder is dif-
ferent from that of the solid one, the underlying physics of the de-
tached or penetrating wake behind the porous cylinder should be
the same as that of the solid one. The observations that the recir-
culating wake develops downstream of the porous square cylinder
and there is only one ‘‘separation” point along the horizontal axis
outside the porous cylinder as shown in Fig. 14 further support
the conclusion on vorticity accumulation as suggested by Leal
(1989), and Dandy and Leal (1989).

3.3. Geometrical parameters of recirculating wake

The downstream distances to the leading and trailing edges of
the recirculating wake (LL and LR) are plotted against Re with Da
as a parameter in Fig. 17. The curves shown in Fig. 17 indicate that
for Da = 1 � 10�6 and 5 � 10�4, LL decreases slightly with increas-
ing Re, while for Da = 7.4 � 10�3, LL initially decreases slightly
and then increases with increasing Re. For a relative small Da
(= 5 � 10�4), LL becomes negative but rather close to zero for a cer-
tain range of Re, which means the recirculating wake slightly pen-
etrates into the porous square cylinder. However, it is worth
mentioning that the recirculating wake always initially develops
downstream of the cylinder. Fig. 17 shows that, for fixed Da, with
increasing Re, LR increases linearly if Da = 1 � 10�6 and 5 � 10�4,
while LR initially increases and then decreases if Da = 7.4 � 10�3.
Fig. 17 also indicates that for fixed Re, LR always decreases with a
decrease in Da. For fixed Re, with a decrease in Da, LR increases
when Re is less than �30 while may decreases if Re > �30.
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Fig. 17. Downstream distances to the leading and trailing edges of the recirculating
wake (LL and LR) against Re with Da as a parameter.
The lengths of the recirculating wake Lw are plotted against Re
with Da as a parameter in Fig. 18. Also, Lw for the solid cylinder ob-
tained by the simulations of the present study and by the simula-
tions and the formulation of Sharma and Eswaran (2004) at
different Re are presented in Fig. 18. It is apparent, for the solid cyl-
inder, the present results agree well with those of Sharma and
Eswaran (2004) and only a small discrepancy exists when Re is
large (Re > 40). Also, as in the case of LR, with increasing Re, Lw lin-
early increases when Da is moderate (= 5 � 10�4) or small
(= 1 � 10�6) while it initially increases and then decreases when
Da is large (= 7.4 � 10�3). Generally, for fixed Re, the wake length
increases with decreasing Da. However, when Re is large (�45),
the wake length reaches its maximum (�3.27) when Da is around
5 � 10�4 as shown in Fig. 18.

Fig. 19 presents the position of the wake centre (Cx and Cy)
against Re with Da as a parameter. For fixed Da, Cx always increases
with increasing Re, which means that the wake centre moves
downstream with increasing Re. The variation of Cy with Re is more
complicated as shown in Fig. 19. For fixed Da, with increasing Re,
Cy increases when Da is moderate (= 5 � 10�4) or small
(= 1 � 10�6), while it initially increases and then decreases when
Da is large (= 7.4 � 10�3). For fixed Re (6 20), Cx slightly increases
with decreasing Da and approaches a constant when Da ? 0. How-
ever, there is no general trend for the variation of Cx with Da when
Re is larger than 25. As shown in Fig. 19, Cx reaches the maximum
value at Da = 7.4 � 10�3 when Re = 30. For fixed Re, Cy increases
with decreasing Da, which means that the wake becomes wider
with decreasing Da. It is worth mentioning that for fixed Re
(P35), both Cx and Cy at different Da (6 5 � 10�4) appear to ap-
proach a constant value.

It is worth noting that the curves for Da = 7.4 � 10�3 in Figs. 17–
19 demonstrate a different trend from those of Da = 5 � 10�4 and
1 � 10�6. As shown before, with increasing Re, the recirculating
wake first increases, then shrinks, and eventually disappears at
Da = 7.4 � 10�3 while monotonically increases at Da = 5 � 10�4

and 1 � 10�6. Thus, the variation of the geometry of recirculating
wake with Re for Da = 7.4 � 10�3 behaves differently comparing
with those for Da = 5 � 10�4 and 1 � 10�6. The fundamental reason
is vorticity accumulation as mentioned before. At Da = 5 � 10�4,
more vorticity is convected downstream of the cylinder due to more
fluid penetrating through the cylinder. When the generation rate of
vorticity is slower than the convection rate, the recirculating wake
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Fig. 18. Length of the recirculating wake Lw against Re with Da as a parameter.



Table 3
Effect of jump parameters on the overall wake length; Da = 5 � 10�6, Re = 20, e = 0.

b1 0 0 0 1.0 1.0 1.0
b2 �1.0 0 1.0 �1.0 0 1.0
LR 1.293 1.294 1.294 1.303 1.303 1.304

Table 2
Effect of porosity on the overall wake length; Da = 5 � 10�6, Re = 20, b1 = b2 = 0.

Porosity 0.4 0.5 0.6 0.7 0.8 0.9

LR 1.300 1.298 1.296 1.294 1.293 1.291
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Fig. 19. Position of the wake centre (Cx and Cy) against Re with Da as a parameter.
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may shrink or disappear. However, at the small Da (5 � 10�4 and
1 � 10�6), the magnitude of vorticity is increased with increasing
Re, thus increasing the size of the recirculating wake.

Figs. 17–19 show that, for fixed Re (6 20), the recirculating
wake is displaced in the downstream direction while becoming
both narrower and shorter with an increase in Da. Because an in-
crease in Da means a big ‘base bleed’ rate, this wake behaviour is
rather similar to that behind 2D bluff body with base bleed (Leal
and Acrivos, 1969). Other wake behaviours associated with varia-
tions of Da and Re are also similar to the findings of Leal and
Acrivos (1969), which include that for fixed Re (6 20), Cy and LR de-
crease with increasing Da.

Figs. 18 and 19 also suggest that for fixed Da, especially when
Da is small, the characteristic dimensions of the recirculating wake
behind the porous cylinder are the same order of that behind the
solid cylinder at the same Re. This in turn suggests that although
the detached recirculating wake is more complicated than the at-
tached wake behind a solid cylinder, the dependence of its geomet-
ric parameters on Reynolds number seems to remain qualitatively
unchanged, especially for a small Da. Again, this conclusion is con-
sistent with that of Leal and Acrivos (1969).

However, there are also noticeable differences between the
present simulations and the observations of Leal and Acrivos
(1969). With increasing Da, the recirculating centre moves up-
stream for a small Re (6 20) in the present study but downstream
observed by Leal and Acrivos (1969). Obviously, the present flow is
more complicated than that of Leal and Acrivos (1969), and thus
cannot be only completely explained from the point of view of base
bleed. Fig. 16 have shown that, for fixed Da, with increasing Re, the
‘base bleed’ rate increases when Da > 5 � 10�3 while decreases
when Da < 1 � 10�3. This result suggests that the detached wake
can be only understood from the interaction between the external
flow around and the internal flow within the porous square
cylinder.

For the external flow around a solid square cylinder, the flow is
mainly determined by the Reynolds number. The magnitude of
vorticity on the surface of cylinder and the wake length increase
with increasing Re. With the presence of base bleed, the convection
of the vorticity becomes increasingly efficient. The recirculating
wake is displaced in the downstream direction while becoming
both narrower and shorter with increasing base bleed rate as
shown by Leal and Acrivos (1969). The present wake behaviour re-
sults from vorticity accumulation due to the competition/coopera-
tion of Re-effect and Da-effect.

For the case of a porous square cylinder, the ‘base bleed’ rate
through the leeward surface is affected by both Da and Re. As indi-
cated by Eq. (3), the ‘base bleed’ rate increases with increasing Re
and/or Da, which explains that the ‘base bleed’ rate increases with
increasing Re at fixed Da (> 5 � 10�3). However, when Da is less
than 1 � 10�3, Fig. 16 shows that the ‘base bleed’ rate decreases
with increasing Re at fixed Da. For a small value of Da, the ‘base
bleed’ rate is small, which has less effect on the external flow. Thus,
the wake structure is mainly determined by Re. With increasing Re,
the rate of vorticity production on the surface increases more effi-
ciently than that of vorticity convection downstream. As a result,
the recirculating wake moves upstream and expands in size with
increasing Re as shown in Figs. 17–19. When Da is small, the recir-
culating wake is rather close to the rear of square cylinder, which
blocks the base bleed from the leeward surface. Thus, the ‘base
bleed’ rate decreases with increasing Re at a small value of Da
(< 1 � 10�3) due to this ‘block’ effect as shown in Fig. 16. When
Da is large (>5 � 10�3), the recirculating wake is relatively far from
the cylinder, and the ‘block’ effect is negligible.

For fixed Re, the ‘base bleed’ rate increases with Da, which
means that the amount of fluid passing around the cylinder de-
creases. This implies a decrease in the effective Reynolds number
Reeff as discussed above. Thus, with increasing Da, the recirculating
wake becomes narrower and shorter due to both ‘base bleed’ effect
and Reeff effect.

For a relative large Re (Re > 35), Figs. 17–19 suggest that the
wake geometry is not sensitive to the variation of Da
(6 5 � 10�4). As explained above, for a large Re, the detached wake
is rather close to the rear of cylinder when Da 6 5 � 10�4. The ‘base
bleed’ rate is almost constant due to the ‘block’ effect of the wake.
Thus, the wake structure remains unchanged when Da is varied.

It is known that besides Re and Da, other parameters, such as
jump coefficients, porosity may also affect the flow. Tables 2 and
3 summarize the variation of the overall wake length LR with dif-
ferent porosities and jump parameters respectively. The two tables
show that the effects of porosity and jump parameters on LR are
negligibly small.
4. Conclusion

The present study examines the detailed wake structure behind
a permeable square cylinder over a wide range of parameters. The
present simulations reveal that the recirculating wake existing be-
hind the porous square cylinder is detached from the cylinder, but
is not attached to the cylinder as which occurs behind a solid cyl-
inder. The recirculating wake is found to develop downstream of
the porous cylinder, but not from its surface as that of the solid cyl-
inder. Also, there is only one ‘‘separation” point along the horizon-
tal axis, but not a pair of separation points on the surface of the
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solid cylinder. When Da ? 0, the wake behaviour of the porous cyl-
inder resembles that of the solid one, which suggests the underly-
ing physics of the detached or penetrating wake behind the porous
cylinder may be the same as that of the solid one. All these features
support the conclusion of Leal (1989) that the existence of recircu-
lating wake behind any body at large, but finite Reynolds number
should be regarded as being a consequence of the accumulation of
vorticity generated upstream on the body surface.

The present wake behaviour can be explained from interaction
between the external flow around and the internal flow within the
porous square cylinder. Obviously, the Reynolds number has an
important effect on the wake structure. Also, the ‘base bleed’ rate
along the leeward surface of the porous cylinder is affected by both
Re and Da, thus influencing the recirculating wake structure. The
wake structure in turn affects the ‘base bleed’ rate, due to the
‘block’ effect. Specially, the wake structure may also be influenced
by the change of the effective Reynolds number due to the ‘base
bleed’ effect. The final wake structure is determined by the balance
of all the effects.

The present results, together with the previous results for the
porous circular cylinder (Yu et al., submitted for publication), con-
firm that the detached wake is an inherent, but not a hypothetical,
phenomenon associated with the flow past and around the porous
cylinder, which appears to control by the weak motion of the fluid
passing through the porous body. This promotes follow-up study
to re-evaluate the case of porous sphere from the point of view
of the effect of the internal porous flow on the external flow. Note
that only steady flow is considered in the present study. It would
be also interesting to further investigate the time-dependent flow
behaviour around and through the porous square cylinder.
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Ferziger, J.H., Perić, M., 1999. Computational Methods for Fluid Dynamics, second
ed. Springer, Berlin.

Joseph, D.D., Tao, L.N., 1964. The effect of permeability on the slow motion of a
porous sphere in a viscous liquid. Z. Angew. Math. Mech. 44, 361–364.

Jue, T.C., 2004. Numerical analysis of vortex shedding behind a porous cylinder. Int.
J. Numer. Meth. Heat Fluid Flow 14, 649–663.

Large, J.L., 1992. Effect of the convective inertia term on bénard convection in a
porous medium. Numer. Heat Transfer A 22, 469–485.

Leal, L.G., 1989. Vorticity transport and wake structure for bluff-bodies at finite
Reynolds-number. Phys. Fluids A-Fluid 1, 124–131.

Leal, L.G., Acrivos, A., 1969. The effect of base bleed on the steady separated flow
past bluff objects. J. Fluid Mech. 38, 735–752.
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